8 research outputs found

    Road curb and intersection detection using A 2D LMS

    Full text link
    In most urban roads, and similar environments such as in theme parks, campus sites, industrial estates, science parks and the like, the painted lane markings that exist may not be easily discernible by CCD cameras due to poor lighting, bad weather conditions, and inadequate maintenance. An important feature of roads in such environments is the existence of pavements or curbs on either side defining the road boundaries. These curbs, which are mostly parallel to the road, can be hardnessed to extract useful features of the road for implementing autonomous navigation or driver assistance systems. However, extraction of the curb or road edge feature using vision image data is a very formidable task as the curb is not conspicuous in the vision image. To extract the curb using vision data requires extensive image processing, heuristics and very favorable ambient lighting. In our approach, road curbs are extracted speedily using range data provided by a 2D Laser range Measurement System (LMS). Experimental results are presented to demonstrate the viability, and effectiveness, of the proposed methodology and its robustness to different road configurations including road intersections

    Road edge and lane boundary detection using laser and vision

    Full text link
    This paper presents a methodology for extracting road edge and lane information for smart and intelligent navigation of vehicles. The range information provided by a fast laser range-measuring device is processed by an extended Kalman filter to extract the road edge or curb information. The resultant road edge information is used to aid in the extraction of the lane boundary from a CCD camera image. Hough Transform (HT) is used to extract the candidate lane boundary edges, and the most probable lane boundary is determined using an Active Line Model based on minimizing an appropriate Energy function. Experimental results are presented to demonstrate the effectiveness of the combined Laser and Vision strategy for road-edge and lane boundary detection

    Road curb tracking in an urban environment

    Full text link
    Road detection and tracking is very useful in the synthesis of driver assistance and intelligent transportation systems. In this paper a methodology is proposed based on the extended Kalman filer for robust road curb detection and tracking using a combination of onboard active and passive sensors. The problem is formulated as detecting and tracking a maneuvering target in clutter using onboard sensors on a moving platform. The primary sensors utilized are a 2 dimensional SICK laser scanner, five encoders and a gyroscope, together with an image sensor (CCD camera). Compared to the active 20 laser scanner the CCD camera is capable of providing observations over an extended horizon, thus making available much useful information about the curb trend, which is exploited in mainly the laser based tracking algorithm. The advantage of the proposed image enhanced laser detection/tracking method, over laser alone detection/tracking, is illustrated using simulations and its robustness to varied road curvatures, branching, turns and scenarios, is demonstrated through experimental results. © 2003 ISlF

    CuTE: Curb Tracking and Estimation

    Full text link
    The number of road accident related fatalities and damages are reduced substantially by improving road infrastructure and enacting and imposing laws. Further reduction is possible through embedding intelligence onto the vehicles for safe decision making. Road boundary information plays a major role in developing such intelligent vehicles. A prominent feature of roads in urban, semi-urban, and similar environments, is curbs on either side defining the road's boundary. In this brief, a novel methodology of tracking curbs is proposed. The problem of tracking a curb from a moving vehicle is formulated as tracking of a maneuvering target in clutter from a mobile platform using onboard sensors. A curb segment is presumed to be the maneuvering target, and is modeled as a nonlinear Markov switching process. The target's (curb's) orientation and location measurements are simultaneously obtained using a two-dimensional (2-D) scanning laser radar (LADAR) and a charge-coupled device (CCD) monocular camera, and are modeled as traditional base state observations. Camera images are also used to estimate the target's mode, which is modeled as a discrete-time point process. An effective curb tracking algorithm, known as Curb Tracking and Estimation (CuTE) using multiple modal sensor information is, thus, synthesized in an image enhanced interactive multiple model filtering framework. The use and fusion of camera vision and LADAR within this frame provide for efficient, effective, and robust tracking of curbs. Extensive experiments conducted in a campus road network demonstrate the viability, effectiveness, and robustness of the proposed method. © 2006 IEEE
    corecore